Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.972
Filtrar
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 516-522, jul. 2024. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1538029

RESUMO

This article aimed to discuss the protection of trans - nerolidol on vascular endothelial cells (ECs) injured by lipopolysac charides. ECs were divided into four groups: normal, model, low and high dose trans - nerolidol treatment groups. The cell survival rate and the contents of NO in the cell culture supernatant were determined. The protein expression and transcript level of pe roxisome proliferator - activated receptor - γ (PPARγ), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS) were determined by western blotting and RT - PCR respectively. Compared with the normal group, cell livability, protein e xpression and mRNA transcript level of PPARγ and eNOS decreased, NO contents, protein expression and mRNA transcript tlevel of iNOS increased in model group significantly. Compared with model group, all the changes recovered in different degree in treatmen t groups. Hence, it was concluded that trans - nerolidol can alleviate the ECs injuryby the regulation of iNOS/eNOS through activating PPARγ in a dose - dependent manner


Este artículo tiene como objetivo discutir la protección del trans - nerolidol en las células endoteliales vasculares (CE) dañadas por lipopolisacáridos. Las CE se di vidieron en cuatro grupos: normal, modelo, grupos de tratamiento con trans - nerolidol de baja y alta dosis. Se determinó la tasa de supervivencia de las células y los contenidos de óxido nítrico (NO) en el sobrenadante del cultivo celular. La expresión de p roteínas y el nivel de transcripción del receptor activado por proliferadores de peroxisomas - γ (PPARγ), el óxido nítrico sint et asa endotelial (eNOS) y el óxido nítrico sint et asa inducible (iNOS) se determinaron mediante western blot y RT - PCR, respectivamen te. En comparación con el grupo normal, la viabilidad celular, la expresión de proteínas y el nivel de transcripción de PPARγ y eNOS disminuyeron, los contenidos de NO, la expresión de proteínas y el nivel de transcripción de iNOS aumentaron significativam ente en el grupo modelo. En comparación con el grupo modelo, todos los cambios se recuperaron en diferentes grados en los grupos de tratamiento. Por lo tanto, se concluyó que el trans - nerolidol puede aliviar el daño en las CE regulando iNOS/eNOS a través d e la activación de PPARγ de manera dependiente de la dosis.


Assuntos
Sesquiterpenos/farmacologia , Lipopolissacarídeos/farmacologia , Células Endoteliais/efeitos dos fármacos
2.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612689

RESUMO

Intestinal epithelial cells (IECs) play crucial roles in forming an essential barrier, providing host defense against pathogens and regulating nutrients absorption. Milk-derived extracellular vesicles (EVs) within its miRNAs are capable of modulating the recipient cell function. However, the differences between colostrum and mature milk EVs and their biological function in attenuating intestinal epithelial cell injury remain poorly understood. Thus, we carried out the present study to characterize the difference between colostrum and mature milk-derived miRNA of EVs and the effect of colostrum and mature milk EVs on the proliferation, apoptosis, proinflammatory cytokines and intestinal epithelial barrier related genes in IEC-6 induced by LPS. Differential expression of 329 miRNAs was identified between colostrum and mature milk EVs, with 185 miRNAs being downregulated and 144 upregulated. In addition, colostrum contains a greater number and protein concentration of EVs than mature milk. Furthermore, compared to control, EVs derived from colostrum significantly inhibited the expression of apoptosis- (Bax, p53, and caspase-3) and proinflammatory-related genes (TNFα, IL6, and IL1ß). EVs derived from mature milk did not affect expression of apoptosis-related genes (Bax, p53, bcl2, and caspase-3). The EVs derived from mature milk significantly inhibited the expression of proinflammatory-related genes (TNFα and IL6). Western blot analysis also indicated that colostrum and mature milk EVs significantly decreased the apoptosis of IEC-6 cells. The EdU assay results showed that colostrum and mature milk EVs significantly increased the proliferation of IEC-6 cells. The expression of intestinal barrier-related genes (TJP1, CLDN1, OCLN, CDX2, MUC2, and IGF1R) was significantly promoted in IEC-6 cells after colostrum and mature milk EVs addition. Importantly, colostrum and mature milk EVs significantly relieved the LPS-induced inhibition of proliferation and intestinal barrier-related genes expression and attenuated apoptosis and proinflammatory responses induced by LPS in IEC-6 cells. Flow cytometry and Western blot analysis also indicated that colostrum and mature milk EVs significantly affect the apoptosis of IEC-6 cells induced by LPS. The results also indicated that EVs derived from colostrum had better effects on inhibiting the apoptosis- and proinflammatory cytokines-related genes expression. However, the EVs derived from mature milk exhibited beneficial effects on intestinal epithelial barrier protection. The present study will provide a better understanding of the role of EVs derived from colostrum and milk in dairy cows with different responses in the regulation of intestinal cells function, and also presents new evidence for the change of EVs cargos during various stages of lactation.


Assuntos
Vesículas Extracelulares , Leite , Animais , Feminino , Gravidez , Bovinos , Colostro , Lipopolissacarídeos/farmacologia , Caspase 3 , Fator de Necrose Tumoral alfa , Interleucina-6 , Proteína Supressora de Tumor p53 , Proteína X Associada a bcl-2 , Células Epiteliais
3.
Arch Oral Biol ; 162: 105964, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582010

RESUMO

OBJECTIVE: This study aimed to explore the effects of small extracellular vesicles derived from lipopolysaccharide-preconditioned dental follicle cells (L-D-sEV) on periodontal ligament cells from periodontitis affected teeth (p-PDLCs) in vitro and experimental periodontitis in mice. DESIGN: In vitro, the biological function of p-PDLCs and the underlying molecular mechanism were investigated by flow cytometry, Western blot, and quantitative real-time PCR (qRT-PCR) analysis. Eighteen-eight-week-old male C57BL/6 mice were randomly divided into three groups: control (Con), periodontitis (Peri), and L-D-sEV groups. Mice periodontitis model was induced by placing the 5-0 silk thread (around the maxillary second molar) and P.gingivalis (1 ×107 CFUs per mouse). In vivo, the alveolar bone loss, osteoclast activity, and macrophage polarization were measured by micro-computed tomography and histological analysis. RESULTS: In vitro, the RANKL/OPG ratio and phosphorylation of JNK and P38 protein levels of p-PDLCs were significantly decreased after L-D-sEV administration. Besides, flow cytometry and qRT-PCR analysis showed that L-D-sEV reduced apoptosis of p-PDLCs, down-regulated apoptosis-related genes Caspase-3 and BCL-2-Associated X expression, and up-regulated B-cell lymphoma-2 gene levels. In vivo, L-D-sEV administration significantly reduced alveolar bone loss, inhibited osteoclast activity, and induced M2 polarization. The histological analysis showed that iNOS/CD206, RANKL/OPG, p-JNK/JNK, and p-P38/P38 ratios were significantly lower in the L-D-sEV group than in the Peri group. CONCLUSIONS: L-D-sEV administration alleviated alveolar bone loss by mediating RANKL/OPG-related osteoclast activity and M2 macrophage polarization, alleviating p-PDLCs apoptosis and proliferation via the JNK and P38 pathways.


Assuntos
Perda do Osso Alveolar , Periodontite , Camundongos , Masculino , Animais , Perda do Osso Alveolar/patologia , Lipopolissacarídeos/farmacologia , Microtomografia por Raio-X , Saco Dentário/metabolismo , Camundongos Endogâmicos C57BL , Periodontite/metabolismo , Apoptose , Modelos Animais de Doenças
4.
Proc Natl Acad Sci U S A ; 121(17): e2402226121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621137

RESUMO

Since its discovery over three decades ago, signal transducer and activator of transcription 1 (STAT1) has been extensively studied as a central mediator for interferons (IFNs) signaling and antiviral defense. Here, using genetic and biochemical assays, we unveil Thr748 as a conserved IFN-independent phosphorylation switch in Stat1, which restricts IFN signaling and promotes innate inflammatory responses following the recognition of the bacterial-derived toxin lipopolysaccharide (LPS). Genetically engineered mice expressing phospho-deficient threonine748-to-alanine (T748A) mutant Stat1 are resistant to LPS-induced lethality. Of note, T748A mice exhibited undisturbed IFN signaling, as well as total expression of Stat1. Further, the T748A point mutation of Stat1 recapitulates the safeguard effect of the genetic ablation of Stat1 following LPS-induced lethality, indicating that the Thr748 phosphorylation contributes inflammatory functionalities of Stat1. Mechanistically, LPS-induced Toll-like receptor 4 endocytosis activates a cell-intrinsic IκB kinase-mediated Thr748 phosphorylation of Stat1, which promotes macrophage inflammatory response while restricting the IFN and anti-inflammatory responses. Depletion of macrophages restores the sensitivity of the T748A mice to LPS-induced lethality. Together, our study indicates a phosphorylation-dependent modular functionality of Stat1 in innate immune responses: IFN phospho-tyrosine dependent and inflammatory phospho-threonine dependent. Better understanding of the Thr748 phosphorylation of Stat1 may uncover advanced pharmacologically targetable molecules and offer better treatment modalities for sepsis, a disease that claims millions of lives annually.


Assuntos
Lipopolissacarídeos , Transdução de Sinais , Animais , Camundongos , Fosforilação , Lipopolissacarídeos/farmacologia , Interferons/metabolismo , Inflamação/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
5.
Zhongguo Zhong Yao Za Zhi ; 49(3): 779-788, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621882

RESUMO

This study aims to investigate the essential oil(EOL) of Cinnamomum camphora regarding its anti-depression effect and mechanism in regulating inflammatory cytokines and the nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) pathway. A mouse model of depression was established by intraperitoneal injection of lipopolysaccharide(LPS). Open field, elevated plus maze, and forced swimming tests were carried out to examine mouse behaviors. Western blot and qRT-PCR were employed to determine the expression of proteins and genes in the Nrf2/HO-1 pathway in the hippocampus. The levels of tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1ß in the serum were measured by enzyme-linked immunosorbent assay(ELISA). The changes of apoptosis in mouse brain were detected by Tunel staining. Compared with the blank control group, the model group showed shortened distance travelled and time spent in the central zone and reduced number of entries in the central zone in the open field test. In the elevated plus maze test, the model group showed reduced open arm time(OT%) and open arm entries(OE%). In the force swimming test, the model group showed extended duration of immobility compared with the blank control group. Compared with the model group, the treatment with EOL significantly increased the distance travelled and time spent in the central zone and increased the number of entries in the central zone in the open field test. In addition, EOL significantly increased the OT% and OE% in the elevated plus maze and shor-tened the immobility duration in the forced swimming test. The model group showed lower expression levels of Nrf2 and HO-1 and hig-her levels of TNF-α, IL-6, and IL-1ß than the blank control group. Compared with the model group, the treatment with EOL up-regulated the expression levels of Nrf2 and HO-1 and lowered the levels of TNF-α, IL-6, and IL-1ß. The Tunel staining results showed that the apoptosis rate in the brain tissue of mice decreased significantly after the treatment with EOL. To sum up, EOL can mitigate the depression-like behaviors of mice by up-regulating the expression of Nrf2 and HO-1 and preventing hippocampal inflammatory damage. The findings provide empirical support for the application of EOL and aromatherapy in the treatment of depression.


Assuntos
Cinnamomum camphora , Óleos Voláteis , Feminino , Camundongos , Animais , Citocinas/metabolismo , Fator de Necrose Tumoral alfa , Interleucina-6 , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Depressão/tratamento farmacológico , Óleos Voláteis/farmacologia , Lipopolissacarídeos/farmacologia
6.
J Agric Food Chem ; 72(15): 8460-8475, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564364

RESUMO

Liver injury and progressive liver failure are severe life-threatening complications in sepsis, further worsening the disease and leading to death. Macrophages and their mediated inflammatory cytokine storm are critical regulators in the occurrence and progression of liver injury in sepsis, for which effective treatments are still lacking. l-Ascorbic acid 6-palmitate (L-AP), a food additive, can inhibit neuroinflammation by modulating the phenotype of the microglia, but its pharmacological action in septic liver damage has not been fully explored. We aimed to investigate L-AP's antisepticemia action and the possible pharmacological mechanisms in attenuating septic liver damage by modulating macrophage function. We observed that L-AP treatment significantly increased survival in cecal ligation and puncture-induced WT mice and attenuated hepatic inflammatory injury, including the histopathology of the liver tissues, hepatocyte apoptosis, and the liver enzyme levels in plasma, which were comparable to NLRP3-deficiency in septic mice. L-AP supplementation significantly attenuated the excessive inflammatory response in hepatic tissues of septic mice in vivo and in cultured macrophages challenged by both LPS and ATP in vitro, by reducing the levels of NLRP3, pro-IL-1ß, and pro-IL-18 mRNA expression, as well as the levels of proteins for p-I-κB-α, p-NF-κB-p65, NLRP3, cleaved-caspase-1, IL-1ß, and IL-18. Additionally, it impaired the inflammasome ASC spot activation and reduced the inflammatory factor contents, including IL-1ß and IL-18 in plasma/cultured superannuants. It also prevented the infiltration/migration of macrophages and their M1-like inflammatory polarization while improving their M2-like polarization. Overall, our findings revealed that L-AP protected against sepsis by reducing macrophage activation and inflammatory cytokine production by suppressing their activation in NF-κB and NLRP3 inflammasome signal pathways in septic liver.


Assuntos
Inflamassomos , Sepse , Camundongos , Animais , Inflamassomos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Interleucina-18 , Ativação de Macrófagos , Transdução de Sinais , Fígado/metabolismo , Ácido Ascórbico , Sepse/complicações , Sepse/tratamento farmacológico , Lipopolissacarídeos/farmacologia
7.
Mol Med Rep ; 29(6)2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38577927

RESUMO

The intestinal mucosal barrier is of great importance for maintaining the stability of the internal environment, which is closely related to the occurrence and development of intestinal inflammation. Octreotide (OCT) has potential applicable clinical value for treating intestinal injury according to previous studies, but the underlying molecular mechanisms have remained elusive. This article is based on a cell model of inflammation induced by lipopolysaccharide (LPS), aiming to explore the effects of OCT in protecting intestinal mucosal barrier function. A Cell Counting Kit­8 assay was used to determine cell viability and evaluate the effectiveness of OCT. Gene silencing technology was used to reveal the mediated effect of somatostatin receptor 2 (SSTR2). The changes in intestinal permeability were detected through trans­epithelial electrical resistance and fluorescein isothiocyanate­dextran 4 experiments, and the alterations in tight junction proteins were detected using immunoblotting and reverse transcription fluorescence­quantitative PCR technology. Autophagosomes were observed by electron microscopy and the dynamic changes of the autophagy process were characterized by light chain (LC)3­II/LC3­I conversion and autophagic flow. The results indicated that SSTR2­dependent OCT can prevent the decrease in cell activity. After LPS treatment, the permeability of monolayer cells decreased and intercellular tight junctions were disrupted, resulting in a decrease in tight junction protein zona occludens 1 in cells. The level of autophagy­related protein LC3 was altered to varying degrees at different times. These abnormal changes gradually returned to normal levels after the combined application of LPS and SSTR2­dependent OCT, confirming the role of OCT in protecting intestinal barrier function. These experimental results suggest that OCT maintains basal autophagy and cell activity mediated by SSTR2 in intestinal epithelial cells, thereby preventing the intestinal barrier dysfunction in inflammation injury.


Assuntos
Lipopolissacarídeos , Octreotida , Humanos , Células CACO-2 , Octreotida/farmacologia , Lipopolissacarídeos/farmacologia , Mucosa Intestinal/metabolismo , Proteínas de Junções Íntimas/metabolismo , Autofagia , Inflamação/metabolismo , Junções Íntimas/metabolismo , Permeabilidade
8.
Stem Cell Res Ther ; 15(1): 95, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566259

RESUMO

BACKGROUND: Human adipose stromal cells-derived extracellular vesicles (haMSC-EVs) have been shown to alleviate inflammation in acute lung injury (ALI) animal models. However, there are few systemic studies on clinical-grade haMSC-EVs. Our study aimed to investigate the manufacturing, quality control (QC) and preclinical safety of clinical-grade haMSC-EVs. METHODS: haMSC-EVs were isolated from the conditioned medium of human adipose MSCs incubated in 2D containers. Purification was performed by PEG precipitation and differential centrifugation. Characterizations were conducted by nanoparticle tracking analysis, transmission electron microscopy (TEM), Western blotting, nanoflow cytometry analysis, and the TNF-α inhibition ratio of macrophage [after stimulated by lipopolysaccharide (LPS)]. RNA-seq and proteomic analysis with liquid chromatography tandem mass spectrometry (LC-MS/MS) were used to inspect the lot-to-lot consistency of the EV products. Repeated toxicity was evaluated in rats after administration using trace liquid endotracheal nebulizers for 28 days, and respiratory toxicity was evaluated 24 h after the first administration. In vivo therapeutic effects were assessed in an LPS-induced ALI/ acute respiratory distress syndrome (ARDS) rat model. RESULTS: The quality criteria have been standardized. In a stability study, haMSC-EVs were found to remain stable after 6 months of storage at - 80°C, 3 months at - 20 °C, and 6 h at room temperature. The microRNA profile and proteome of haMSC-EVs demonstrated suitable lot-to-lot consistency, further suggesting the stability of the production processes. Intratracheally administered 1.5 × 108 particles/rat/day for four weeks elicited no significant toxicity in rats. In LPS-induced ALI/ARDS model rats, intratracheally administered haMSC-EVs alleviated lung injury, possibly by reducing the serum level of inflammatory factors. CONCLUSION: haMSC-EVs, as an off-shelf drug, have suitable stability and lot-to-lot consistency. Intratracheally administered haMSC-EVs demonstrated excellent safety at the tested dosages in systematic preclinical toxicity studies. Intratracheally administered haMSC-EVs improved the lung function and exerted anti-inflammatory effects on LPS-induced ALI/ARDS model rats.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Humanos , Ratos , Animais , Cromatografia Líquida , Proteômica , Lipopolissacarídeos/farmacologia , Espectrometria de Massas em Tandem , Lesão Pulmonar Aguda/terapia , Síndrome do Desconforto Respiratório/terapia , Obesidade , Controle de Qualidade , Vesículas Extracelulares/fisiologia , Células-Tronco Mesenquimais/fisiologia
9.
Sci Rep ; 14(1): 7672, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561377

RESUMO

Lipopolysaccharide (LPS) is known to elicit a robust immune response. This study aimed to investigate the impact of LPS on the transcriptome of human nasal epithelial cells (HNEpC). HNEpC were cultured and stimulated with LPS (1 µg/mL) or an equivalent amount of normal culture medium. Subsequently, total RNA was extracted, purified, and sequenced using next-generation RNA sequencing technology. Differentially expressed genes (DEGs) were identified and subjected to functional enrichment analysis. A protein-protein interaction (PPI) network of DEGs was constructed, followed by Ingenuity Pathway Analysis (IPA) to identify molecular pathways influenced by LPS exposure on HNEpC. Validation of key genes was performed using quantitative real-time PCR (qRT-PCR). A total of 97 DEGs, comprising 48 up-regulated genes and 49 down-regulated genes, were identified. Results from functional enrichment analysis, PPI, and IPA indicated that DEGs were predominantly enriched in chemokine-related signaling pathways. Subsequent qRT-PCR validation demonstrated significant upregulation of key genes in these pathways in LPS-treated HNEpC compared to control cells. In conclusion, LPS intervention profoundly altered the transcriptome of HNEpC, potentially exacerbating inflammatory responses through the activation of chemokine-related signaling pathways.


Assuntos
Perfilação da Expressão Gênica , Lipopolissacarídeos , Humanos , Perfilação da Expressão Gênica/métodos , Lipopolissacarídeos/farmacologia , Transcriptoma , Transdução de Sinais/genética , Células Epiteliais , Quimiocinas/genética , Biologia Computacional/métodos
10.
J Orthop Surg Res ; 19(1): 230, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589918

RESUMO

BACKGROUND: Spinal cord injury (SCI) can result in structural and functional damage to the spinal cord, which may lead to loss of limb movement and sensation, loss of bowel and bladder control, and other complications. Previous studies have revealed the critical influence of trans-acting transcription factor 1 (SP1) in neurological pathologies, however, its role and mechanism in SCI have not been fully studied. METHODS: The study was performed using mouse microglia BV2 stimulated using lipopolysaccharide (LPS) and male adult mice subjected to spinal hitting. Western blotting was performed to detect protein expression of SP1, 5-hydroxytryptamine (serotonin) receptor 2B (HTR2B), BCL2-associated x protein (Bax), B-cell lymphoma-2 (Bcl-2), inducible nitric oxide synthase (iNOS), clusters of differentiation 86 (CD86), Arginase 1 (Arg-1) and clusters of differentiation 206 (CD206). Cell viability and apoptosis were analyzed by MTT assay and TUNEL assay. mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-4 (IL-4) and tumor necrosis factor-ß (TNF-ß) were quantified by quantitative real-time polymerase chain reaction. The association of SP1 and HTR2B was identified by chromatin immunoprecipitation assay and dual-luciferase reporter assay. HE staining assay was performed to analyze the pathological conditions of spinal cord tissues. RESULTS: LPS treatment induced cell apoptosis and inhibited microglia polarization from M1 to M2 phenotype, accompanied by an increase of Bax protein expression and a decrease of Bcl-2 protein expression, however, these effects were relieved after SP1 silencing. Mechanism assays revealed that SP1 transcriptionally activated HTR2B in BV2 cells, and HTR2B knockdown rescued LPS-induced effects on BV2 cell apoptosis and microglial M1/M2 polarization. Moreover, SP1 absence inhibited BV2 cell apoptosis and promoted microglia polarization from M1 to M2 phenotype by decreasing HTR2B expression. SCI mouse model assay further showed that SP1 downregulation could attenuate spinal hitting-induced promoting effects on cell apoptosis of spinal cord tissues and microglial M1 polarization. CONCLUSION: SP1 transcriptionally activated HTR2B to aggravate traumatic SCI by shifting microglial M1/M2 polarization.


Assuntos
Microglia , Traumatismos da Medula Espinal , Camundongos , Masculino , Animais , Microglia/metabolismo , Lipopolissacarídeos/farmacologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
11.
Front Immunol ; 15: 1330373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596679

RESUMO

Introduction: Indole-3-carbinol (I3C) is found in cruciferous vegetables and used as a dietary supplement. It is known to act as a ligand for aryl hydrocarbon receptor (AhR). In the current study, we investigated the role of AhR and the ability of I3C to attenuate LPS-induced Acute Respiratory Distress Syndrome (ARDS). Methods: To that end, we induced ARDS in wild-type C57BL/6 mice, Ccr2gfp/gfp KI/KO mice (mice deficient in the CCR2 receptor), and LyZcreAhRfl/fl mice (mice deficient in the AhR on myeloid linage cells). Additionally, mice were treated with I3C (65 mg/kg) or vehicle to investigate its efficacy to treat ARDS. Results: I3C decreased the neutrophils expressing CXCR2, a receptor associated with neutrophil recruitment in the lungs. In addition, LPS-exposed mice treated with I3C revealed downregulation of CCR2+ monocytes in the lungs and lowered CCL2 (MCP-1) protein levels in serum and bronchoalveolar lavage fluid. Loss of CCR2 on monocytes blocked the recruitment of CXCR2+ neutrophils and decreased the total number of immune cells in the lungs during ARDS. In addition, loss of the AhR on myeloid linage cells ablated I3C-mediated attenuation of CXCR2+ neutrophils and CCR2+ monocytes in the lungs from ARDS animals. Interestingly, scRNASeq showed that in macrophage/monocyte cell clusters of LPS-exposed mice, I3C reduced the expression of CXCL2 and CXCL3, which bind to CXCR2 and are involved in neutrophil recruitment to the disease site. Discussion: These findings suggest that CCR2+ monocytes are involved in the migration and recruitment of CXCR2+ neutrophils during ARDS, and the AhR ligand, I3C, can suppress ARDS through the regulation of immune cell trafficking.


Assuntos
Indóis , Monócitos , Síndrome do Desconforto Respiratório , Camundongos , Animais , Monócitos/metabolismo , Lipopolissacarídeos/farmacologia , Neutrófilos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Ligantes , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo
12.
Respir Res ; 25(1): 157, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594676

RESUMO

BACKGROUND: Environmental/occupational exposures cause significant lung diseases. Agricultural organic dust extracts (ODE) and bacterial component lipopolysaccharide (LPS) induce recruited, transitioning murine lung monocytes/macrophages, yet their cellular role remains unclear. METHODS: CCR2 RFP+ mice were intratracheally instilled with high concentration ODE (25%), LPS (10 µg), or gram-positive peptidoglycan (PGN, 100 µg) for monocyte/macrophage cell-trafficking studies. CCR2 knockout (KO) mice and administration of intravenous clodronate liposomes strategies were employed to reduce circulating monocytes available for lung recruitment following LPS exposure. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected. Pro-inflammatory and/or pro-fibrotic cytokines, chemokines, and lung extracellular matrix mediators were quantitated by ELISA. Infiltrating lung cells including monocyte/macrophage subpopulations, neutrophils, and lymphocytes were characterized by flow cytometry. Lung histopathology, collagen content, vimentin, and post-translational protein citrullination and malondialdehyde acetaldehyde (MAA) modification were quantitated. Parametric statistical tests (one-way ANOVA, Tukey'smultiple comparison) and nonparametric statistical (Kruskal-Wallis, Dunn's multiple comparison) tests were used following Shapiro-Wilk testing for normality. RESULTS: Intratracheal instillation of ODE, LPS, or PGN robustly induced the recruitment of inflammatory CCR2+ CD11cintCD11bhi monocytes/macrophages and both CCR2+ and CCR2- CD11c-CD11bhi monocytes at 48 h. There were also increases in CCR2+ CD4+ and CD8+ T cells and NK cells. Despite reductions in LPS-induced lung infiltrating CD11cintCD11bhi cells (54% reduction), CCR2 knockout (KO) mice were not protected against LPS-induced inflammatory and pro-fibrotic consequences. Instead, compensatory increases in lung neutrophils and CCL2 and CCL7 release occurred. In contrast, the depletion of circulating monocytes through the administration of intravenous clodronate (vs. vehicle) liposomes 24 h prior to LPS exposure reduced LPS-induced infiltrating CD11cintCD11bhi monocyte-macrophage subpopulation by 59% without compensatory changes in other cell populations. Clodronate liposome pre-treatment significantly reduced LPS-induced IL-6 (66% reduction), matrix metalloproteinases (MMP)-3 (36%), MMP-8 (57%), tissue inhibitor of metalloproteinases (61%), fibronectin (38%), collagen content (22%), and vimentin (40%). LPS-induced lung protein citrullination and MAA modification, post-translational modifications implicated in lung disease, were reduced (39% and 48%) with clodronate vs. vehicle liposome. CONCLUSION: Highly concentrated environmental/occupational exposures induced the recruitment of CCR2+ and CCR2- transitioning monocyte-macrophage and monocyte subpopulations and targeting peripheral monocytes may reduce the adverse lung consequences resulting from exposures to LPS-enriched inhalants.


Assuntos
Pneumopatias , Monócitos , Camundongos , Animais , Monócitos/metabolismo , Lipossomos/metabolismo , Vimentina/metabolismo , Lipopolissacarídeos/farmacologia , Ácido Clodrônico/farmacologia , Ácido Clodrônico/metabolismo , Linfócitos T CD8-Positivos , Pulmão , Macrófagos/metabolismo , Pneumopatias/metabolismo , Exposição Ambiental , Colágeno/metabolismo , Camundongos Endogâmicos C57BL
13.
Biochem Biophys Res Commun ; 710: 149887, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581954

RESUMO

SS-31 is a mitochondria-targeting short peptide. Recent studies have indicated its hepatoprotective effects. In our study, we investigated the impact of SS-31 on LPS-induced autophagy in HepG2 cells. The results obtained from a dual-fluorescence autophagy detection system revealed that SS-31 promotes the formation of autolysosomes and autophagosomes, thereby facilitating autophagic flux to a certain degree. Additionally, both ELISA and qPCR analyses provided further evidence that SS-31 safeguards HepG2 cells against inflammatory responses triggered by LPS through ATG5-dependent autophagy. In summary, our study demonstrates that SS-31 inhibits LPS-stimulated inflammation in HepG2 cells by upregulating ATG5-dependent autophagy.


Assuntos
Autofagia , Lipopolissacarídeos , Humanos , Células Hep G2 , Lipopolissacarídeos/farmacologia , Autofagossomos , Inflamação , Proteína 5 Relacionada à Autofagia/genética
14.
Biochem Biophys Res Commun ; 710: 149832, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38588614

RESUMO

BACKGROUND: Sepsis-induced acute lung injury (ALI) is associated with considerable morbidity and mortality in critically ill patients. S100A9, a key endothelial injury factor, is markedly upregulated in sepsis-induced ALI; however, its specific mechanism of action has not been fully elucidated. METHODS: The Gene Expression Omnibus database transcriptome data for sepsis-induced ALI were used to screen for key differentially expressed genes (DEGs). Using bioinformatics analysis methods such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction network analyses, the pathogenesis of sepsis-induced ALI was revealed. Intratracheal infusion of lipopolysaccharide (LPS, 10 mg/kg) induced ALI in wild-type (WT) and S100A9 knockout mice. Multiomics analyses (transcriptomics and proteomics) were performed to investigate the potential mechanisms by which S100A9 exacerbates acute lung damage. Hematoxylin-eosin, Giemsa, and TUNEL staining were used to evaluate lung injury and cell apoptosis. LPS (10 µg/mL)-induced murine lung epithelial MLE-12 cells were utilized to mimic ALI and were modulated by S100A9 lentiviral transfection. The impact of S100A9 on cell apoptosis and inflammatory responses were identified using flow cytometry and PCR. The expression of interleukin (IL)-17-nuclear factor kappa B (NFκB)-caspase-3 signaling components was identified using western blotting. RESULTS: Six common DEGs (S100A9, S100A8, IFITM6, SAA3, CD177, and MMP9) were identified in the six datasets related to ALI in sepsis. Compared to WT sepsis mice, S100A9 knockout significantly alleviated LPS-induced ALI in mice, with reduced lung structural damage and inflammatory exudation, decreased exfoliated cell and protein content in the lung lavage fluid, and reduced apoptosis and necrosis of pulmonary epithelial cells. Transcriptomic analysis revealed that knocking out S100A9 significantly affected 123 DEGs, which were enriched in immune responses, defense responses against bacteria or lipopolysaccharides, cytokine-cytokine receptor interactions, and the IL-17 signaling pathway. Proteomic analysis revealed that S100A9 knockout alleviated muscle contraction dysfunction and structural remodeling in sepsis-induced ALI. Multiomics analysis revealed that S100A9 may be closely related to interferon-induced proteins with tetratricopeptide repeats and oligoadenylate synthase-like proteins. LPS decreased MLE12 cell activity, accompanied by high expression of S100A9. The expression of IL-17RA, pNFκB, and cleaved-caspase-3 were increased by S100A9 overexpression and reduced by S100A9 knockdown in LPS-stimulated MLE12 cells. S100A9 knockdown decreases transcription of apoptosis-related markers Bax, Bcl and caspase-3, alleviating LPS-induced apoptosis. CONCLUSIONS: S100A9 as a key biomarker of sepsis-induced acute lung injury, and exacerbates lung damage and epithelial cell apoptosis induced by LPS via the IL-17-NFκB-caspase-3 signaling pathway.


Assuntos
Lesão Pulmonar Aguda , Sepse , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Interleucina-17/metabolismo , Caspase 3/metabolismo , Lipopolissacarídeos/farmacologia , Proteômica , Lesão Pulmonar Aguda/induzido quimicamente , Pulmão/patologia , Transdução de Sinais , Camundongos Knockout , Sepse/patologia , Calgranulina B/genética , Calgranulina B/metabolismo
15.
Eur J Med Res ; 29(1): 233, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622672

RESUMO

BACKGROUND: Atrial fibrillation (AF) is associated with circulating inflammation. Short-chain fatty acids (SCFAs) derived from gut microbiota (GM) regulate leukocyte function and inhibit the release of inflammatory cytokines, which are partly mediated by the G-protein-coupled receptor 43 (GPR43) signaling. This study aimed to investigate the expression of GPR43/NOD-like receptors family pyrin domain containing 3 (NLRP3) in leukocytes and the interaction with intestinal SCFAs levels in AF patients. METHODS: Expressions of GPR43 and NLRP3 mRNA in peripheral blood leukocytes from 23 AF patients and 25 non-AF controls were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Expressions of leukocyte GPR43 and NLRP3 protein were evaluated by western blot analysis. The levels of plasma IL-1ß were measured by enzyme-linked immunosorbent assay (ELISA). The fecal SCFAs levels based on GC/MS metabolome of corresponding 21 controls and 14 AF patients were acquired from our published dataset. To evaluate the expression of NLRP3 and GPR43 and the release of IL-1ß, human THP-1 cells were stimulated with or without SCFAs (acetate, propionate, and butyrate), lipopolysaccharide (LPS), and nigericin in vitro, respectively. RESULTS: Compared to the controls, the mRNA expression in peripheral leukocytes was significantly reduced in AF patients (P = 0.011) coupled with the increase in downstream leukocyte NLRP3 mRNA expression (P = 0.007) and plasma IL-1ß levels (P < 0.001), consistent with changes in GPR43 and NLRP3 protein expression. Furthermore, leukocyte GPR43 mRNA levels were positively correlated with fecal GM-derived acetic acid (P = 0.046) and negatively correlated with NLRP3 mRNA expression (P = 0.024). In contrast to the negative correlation between left atrial diameter (LAD) and GPR43 (P = 0.008), LAD was positively correlated with the leukocyte NLRP3 mRNA levels (P = 0.024). Subsequent mediation analysis showed that 68.88% of the total effect of intestinal acetic acid on AF might be mediated by leukocyte GPR43/NLRP3. The constructed GPR43-NLRP3 score might have a predictive potential for AF detection (AUC = 0.81, P < 0.001). Moreover, SCFAs treatment increased GPR43 expression and remarkably reduced LPS/nigericin-induced NLRP3 expression and IL-1ß release in human THP-1 cells in vitro. CONCLUSIONS: Disrupted interactions between GPR43 and NLRP3 expression in peripheral blood leukocytes, associated with reduced intestinal GM-derived SCFAs, especially acetic acid, may be involved in AF development and left atrial enlargement by enhancing circulating inflammation.


Assuntos
Fibrilação Atrial , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Acetatos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Inflamação/metabolismo , Leucócitos/metabolismo , Lipopolissacarídeos/farmacologia , Nigericina/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Ann Biol Clin (Paris) ; 82(1): 70-80, 2024 04 19.
Artigo em Francês | MEDLINE | ID: mdl-38638020

RESUMO

Pediatric acute liver failure (PALF) is a severe liver dysfunction with complex pathological mechanisms and rapid development. MiRNAs have been identified as promising biomarkers for human disease screening and monitoring. This study focused on evaluating the clinical significance of miR-224-5p in PALF and revealing its potential molecular mechanism in regulating liver cell injury. This study enrolled 103 children with PALF and 55 healthy children without liver diseases. Serum miR-224-5p levels were compared between the two groups, and their clinical significance was estimated by analyzing the correlation with clinicopathological features and outcomes of PALF children. In vitro, a normal liver cell was treated with lipopolysaccharide (LPS), and cell growth and inflammation were assessed by CCK8 and ELISA assay. Upregulated miR-224-5p in PALF showed significance in screening PALF children from healthy children with the sensitivity and specificity of 78.64% and 84.47%, respectively. Increasing serum miR-224-5p in PALF children was closely associated with increasing prothrombin time, alanine transaminase, international normalized ratio, total bilirubin, ammonia, and aspartic transaminase and decreasing albumin of PALF children. MiR-224-5p was also identified as a risk factor for adverse outcomes in children with PALF. In LPS-treated liver cells, miR-224-5p could negatively regulate ZBTB20, and silencing miR-224-5p could alleviate the inhibited cell growth and promoted inflammation by LPS, which was reversed by ZBTB20 knockdown. Increasing miR-224-5p distinguished PALF children, predict severe disease development and risk of adverse prognosis. miR-224-5p also reguled LPS-induced liver cell injury via negatively regulating ZBTB20.


Assuntos
Lipopolissacarídeos , MicroRNAs , Humanos , Criança , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , Hepatócitos , Fígado , Inflamação/diagnóstico , Inflamação/genética , Proteínas do Tecido Nervoso , Fatores de Transcrição
17.
Mol Biol Rep ; 51(1): 550, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642183

RESUMO

BACKGROUND: The therapeutic efficacy of intra-articular mesenchymal stem cells (MSCs) injection for patients with osteoarthritis (OA) currently exhibits inconsistency, and the underlying mechanism remains elusive. It has been postulated that the immunomodulatory properties and paracrine activity of MSCs might be influenced by the inflammatory micro-environment within osteoarthritic joints, potentially contributing to this observed inconsistency. METHODS: Adipose-derived MSCs (ADSCs) were isolated from SD rats and pre-treated with Toll-like receptor 3 (TLR3) agonist Poly I:C or Toll-like receptor 4 (TLR4) agonist LPS. The pre-treated ADSCs were then co-cultured with IL-1ß-induced osteoarthritic chondrocytes using a Transwell system to analyze the paracrine effect of ADSCs on reversing the osteoarthritic phenotype of chondrocytes. RESULTS: RT-PCR and Western blot analysis revealed that Poly I:C and LPS pre-treatments up-regulated the expression of IL-10 and IL-6 in ADSCs, respectively. Furthermore, only Poly I:C-preconditioned ADSCs significantly promoted proliferation while inhibiting apoptosis in IL-1ß-treated chondrocytes. Additionally, Poly I:C-preconditioned ADSCs downregulated MMP13 expression while upregulating aggrecan and collagen II expression levels in IL-1ß-treated chondrocytes. CONCLUSIONS: TLR3 activation polarizes ADSCs into an immunomodulatory phenotype distinct from TLR4 activation, exerting differential effects on reversing the osteoarthritic phenotype of chondrocytes; thus indicating that MSCs' paracrine effect regulated by TLRs signaling impacts the efficacy of intra-articular MSCs injection.


Assuntos
Condrócitos , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Condrócitos/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Células Cultivadas , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Ratos Sprague-Dawley , Células-Tronco Mesenquimais/metabolismo , Receptores Toll-Like/metabolismo , Fenótipo , Poli I/metabolismo , Poli I/farmacologia
18.
PLoS One ; 19(4): e0301660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626146

RESUMO

BACKGROUND: Ulcerative colitis (UC) is an inflammatory disease of the digestive tract. Rauwolfia polysaccharide (Rau) has therapeutic effects on colitis in mice, but its mechanism of action needs to be further clarified. In the study, we explored the effect of Rau on the UC cell model induced by Lipopolysaccharide (LPS). METHODS: We constructed a UC cell model by stimulating HT-29 cells with LPS. Dextran sodium sulfate (DSS) was used to induce mice to construct an animal model of UC. Subsequently, we performed Rau administration on the UC cell model. Then, the therapeutic effect of Rau on UC cell model and was validated through methods such as Cell Counting Kit-8 (CCK8), Muse, Quantitative real­time polymerase chain reaction (RT-qPCR), Western blotting, and Enzyme-linked immunosorbent assay (ELISA). RESULTS: The results showed that Rau can promote the proliferation and inhibit the apoptosis of the HT-29 cells-induced by LPS. Moreover, we observed that Rau can inhibit the expression of NOS2/JAK2/STAT3 in LPS-induced HT-29 cells. To further explore the role of NOS2 in UC progression, we used siRNA technology to knock down NOS2 and search for its mechanism in UC. The results illustrated that NOS2 knockdown can promote proliferation and inhibit the apoptosis of LPS-induced HT-29 cells by JAK2/STAT3 pathway. In addition, in vitro and in vivo experiments, we observed that the activation of the JAK2/STAT3 pathway can inhibit the effect of Rau on DSS-induced UC model. CONCLUSION: In short, Rauwolfia polysaccharide can inhibit the progress of ulcerative colitis through NOS2-mediated JAK2/STAT3 pathway. This study provides a theoretical clue for the treatment of UC by Rau.


Assuntos
Alcaloides , Colite Ulcerativa , Colite , Rauwolfia , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Lipopolissacarídeos/farmacologia , Colite/metabolismo , Polissacarídeos/metabolismo , Alcaloides/farmacologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo/metabolismo
19.
PLoS One ; 19(4): e0298748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630734

RESUMO

Although histone proteins are widely known for their intranuclear functions where they organize DNA, all five histone types can also be released into the extracellular space from damaged cells. Extracellular histones can interact with pattern recognition receptors of peripheral immune cells, including toll-like receptor 4 (TLR4), causing pro-inflammatory activation, which indicates they may act as damage-associated molecular patterns (DAMPs) in peripheral tissues. Very limited information is available about functions of extracellular histones in the central nervous system (CNS). To address this knowledge gap, we applied mixed histones (MH) to cultured cells modeling neurons, microglia, and astrocytes. Microglia are the professional CNS immunocytes, while astrocytes are the main support cells for neurons. Both these cell types are critical for neuroimmune responses and their dysregulated activity contributes to neurodegenerative diseases. We measured effects of extracellular MH on cell viability and select neuroimmune functions of microglia and astrocytes. MH were toxic to cultured primary murine neurons and also reduced viability of NSC-34 murine and SH-SY5Y human neuron-like cells in TLR4-dependent manner. MH did not affect the viability of resting or immune-stimulated BV-2 murine microglia or U118 MG human astrocytic cells. When applied to BV-2 cells, MH enhanced secretion of the potential neurotoxin glutamate, but did not modulate the release of nitric oxide (NO), tumor necrosis factor-α (TNF), C-X-C motif chemokine ligand 10 (CXCL10), or the overall cytotoxicity of lipopolysaccharide (LPS)- and/or interferon (IFN)-γ-stimulated BV-2 microglial cells towards NSC-34 neuron-like cells. We demonstrated, for the first time, that MH downregulated phagocytic activity of LPS-stimulated BV-2 microglia. However, MH also exhibited protective effect by ameliorating the cytotoxicity of LPS-stimulated U118 MG astrocytic cells towards SH-SY5Y neuron-like cells. Our data demonstrate extracellular MH could both damage neurons and alter neuroimmune functions of glial cells. These actions of MH could be targeted for treatment of neurodegenerative diseases.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Camundongos , Humanos , Animais , Histonas/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Neuroblastoma/metabolismo , Microglia/metabolismo , Células Cultivadas , Doenças Neurodegenerativas/metabolismo
20.
Front Immunol ; 15: 1348181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558813

RESUMO

Rationale: Circadian systems drive the expression of multiple genes in nearly all cells and coordinate cellular-, tissue-, and system-level processes that are critical to innate immunity regulation. Objective: We examined the effects of circadian rhythm disorganization, produced by light shift exposure, on innate immunity-mediated inflammatory lung responses including vascular permeability and gene expression in a C57BL/6J murine model of inflammatory lung injury. Methods: A total of 32 C57BL/6J mice were assigned to circadian phase shifting (CPS) with intratracheal phosphate-buffered saline (PBS), CPS with intratracheal lipopolysaccharide (LPS), control (normal lighting) condition with intratracheal PBS, and control condition with intratracheal LPS. Bronchoalveolar lavage (BAL) protein, cell counts, tissue immunostaining, and differentially expressed genes (DEGs) were measured in lung tissues at 2 and 10 weeks. Measurements and results: In mice exposed to both CPS and intratracheal LPS, both BAL protein and cell counts were increased at both 2 and 10 weeks compared to mice exposed to LPS alone. Multiple DEGs were identified in CPS-LPS-exposed lung tissues compared to LPS alone and were involved in transcriptional pathways associated with circadian rhythm disruption, regulation of lung permeability, inflammation with Rap1 signaling, and regulation of actin cytoskeleton. The most dysregulated pathways included myosin light chain kinase, MAP kinase, profilin 2, fibroblast growth factor receptor, integrin b4, and p21-activated kinase. Conclusion: Circadian rhythm disruption results in exacerbated immune response and dysregulated expression of cytoskeletal genes involved in the regulation of epithelial and vascular barrier integrity-the mechanistic underpinnings of acute lung injury. Further studies need to explore circadian disorganization as a druggable target.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Pulmão , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...